If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+4x^2=76
We move all terms to the left:
3x+4x^2-(76)=0
a = 4; b = 3; c = -76;
Δ = b2-4ac
Δ = 32-4·4·(-76)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-35}{2*4}=\frac{-38}{8} =-4+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+35}{2*4}=\frac{32}{8} =4 $
| 8(11x+15x)=100 | | 7m=97 | | 21+3x=12-5x | | 3(x+7)^+4=79 | | 0.08(x−100)=59.5−0.07x | | x^-14x+99=4 | | -5/8+y=1/2 | | 2^x=0,125 | | x^+10x+25=100 | | 5y−4y=9 | | P=219 +254 d | | -5/8r=15 | | (2x+3)(3x+1)=11+30 | | (5x+11)^-300=0 | | 6x-2=18-4x-3 | | x/4=xx2-5x3 | | 12x^=49 | | 3(2x)+4=5-(3x-10)-x | | 12+5b=8b | | 1/2(2x-4)-1/3x=4/3x-5 | | 4(2x+3)=134 | | 7y=36+y | | 4b+96=12b | | -1+3x=-x+27 | | -9g-3g-6g+4g=12 | | 8+2x=-2x+4 | | 6x-7=5x-8 | | 21-6x=9x-3 | | 3(x+7)-x=2(2x+10) | | 0.3/x=0.25 | | 4x+7=-1+5x | | 1.3z+1.5=5.8 |